JUHE API Marketplace
whdghk1907 avatar
MCP Server

MCP Stock Details Server

A Model Context Protocol server providing comprehensive Korean stock market analysis, including financial data, valuation metrics, ESG information, and investment insights.

0
GitHub Stars
8/18/2025
Last Updated
MCP Server Configuration
1{
2 "name": "stock-details",
3 "command": "python",
4 "args": [
5 "-m",
6 "src.server"
7 ],
8 "cwd": "/path/to/mcp-stock-details",
9 "env": {
10 "DART_API_KEY": "your_api_key"
11 }
12}
JSON12 lines

README Documentation

MCP Stock Details Server

A comprehensive Model Context Protocol (MCP) server for Korean stock market analysis, providing detailed financial data, analysis tools, and investment insights.

🚀 Features

Phase 1 ✅ - Core Infrastructure

  • MCP Server Framework: Model Context Protocol compliant server
  • Data Collection: DART (Data Analysis, Retrieval and Transfer System) integration
  • Caching System: Redis-based caching with memory fallback
  • Error Handling: Comprehensive exception handling and logging

Phase 2 ✅ - Analysis Tools (Weeks 1-5)

Week 1: Company & Financial Analysis

  • get_company_overview: Comprehensive company information
  • get_financial_statements: Income statement, balance sheet, cash flow analysis

Week 2: Financial Ratios & Valuation

  • get_financial_ratios: 50+ financial ratios with industry benchmarks
  • get_valuation_metrics: Multiple valuation approaches (DCF, multiples, etc.)

Week 3: ESG & Technical Analysis

  • get_esg_info: Environmental, Social, Governance analysis
  • get_technical_indicators: Technical analysis indicators (RSI, MACD, etc.)

Week 4: Shareholder & Business Analysis

  • get_shareholder_info: Shareholder structure, governance metrics
  • get_business_segments: Business segment performance analysis

Week 5: Market Analysis

  • get_peer_comparison: Industry peer comparison and benchmarking
  • get_analyst_consensus: Analyst consensus, target prices, investment opinions

Upcoming Features (Phase 3-5)

  • Advanced valuation models (DCF, Monte Carlo simulation)
  • Risk analysis engine (VaR, stress testing)
  • Real-time data pipeline
  • Performance optimization
  • Production deployment

🛠️ Installation

Prerequisites

  • Python 3.8 or higher
  • Redis (optional, for enhanced caching)

Setup

# Clone the repository
git clone https://github.com/yourusername/mcp-stock-details.git
cd mcp-stock-details

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Set up environment variables
cp .env.example .env
# Edit .env with your DART API key and other settings

Environment Variables

# Required
DART_API_KEY=your_dart_api_key_here

# Optional
REDIS_URL=redis://localhost:6379/0
LOG_LEVEL=INFO
CACHE_TTL=3600

🚀 Quick Start

Running the Server

# Start the MCP server
python -m src.server

# Or run with specific configuration
python -m src.server --config config/development.json

Using with Claude Desktop

Add to your Claude Desktop MCP configuration:

{
  "mcpServers": {
    "stock-details": {
      "command": "python",
      "args": ["-m", "src.server"],
      "cwd": "/path/to/mcp-stock-details",
      "env": {
        "DART_API_KEY": "your_api_key"
      }
    }
  }
}

Example Usage

# Get company overview
result = await server.call_tool("get_company_overview", {
    "company_code": "005930",  # Samsung Electronics
    "include_financial_summary": True
})

# Analyze financial ratios
result = await server.call_tool("get_financial_ratios", {
    "company_code": "005930",
    "include_industry_comparison": True,
    "analysis_period": "3Y"
})

# Compare with peers
result = await server.call_tool("get_peer_comparison", {
    "company_code": "005930",
    "include_valuation_comparison": True,
    "max_peers": 5
})

📊 Supported Analysis

Financial Analysis

  • Profitability Ratios: ROE, ROA, Operating Margin, Net Margin
  • Liquidity Ratios: Current Ratio, Quick Ratio, Cash Ratio
  • Leverage Ratios: Debt-to-Equity, Interest Coverage, EBITDA Coverage
  • Efficiency Ratios: Asset Turnover, Inventory Turnover, Receivables Turnover
  • Valuation Ratios: P/E, P/B, EV/EBITDA, PEG Ratio

Advanced Analysis

  • DCF Valuation: Multi-stage dividend discount model
  • Peer Comparison: Industry benchmarking and relative valuation
  • ESG Scoring: Environmental, Social, Governance metrics
  • Technical Indicators: RSI, MACD, Bollinger Bands, Moving Averages
  • Risk Analysis: Beta, VaR, Sharpe Ratio, Maximum Drawdown

Market Intelligence

  • Analyst Consensus: Target prices, investment ratings, earnings estimates
  • Shareholder Analysis: Ownership structure, governance metrics
  • Business Segments: Revenue breakdown, segment performance analysis

🧪 Testing

# Run all tests
python -m pytest

# Run with coverage
python -m pytest --cov=src --cov-report=html

# Run specific test categories
python -m pytest tests/unit/
python -m pytest tests/integration/

📁 Project Structure

mcp-stock-details/
├── src/
│   ├── server.py                 # Main MCP server
│   ├── config.py                 # Configuration management
│   ├── exceptions.py             # Custom exceptions
│   ├── models/                   # Data models
│   ├── tools/                    # Analysis tools
│   │   ├── company_tools.py
│   │   ├── financial_tools.py
│   │   ├── valuation_tools.py
│   │   ├── esg_tools.py
│   │   ├── technical_tools.py
│   │   ├── risk_tools.py
│   │   ├── shareholder_tools.py
│   │   ├── business_segment_tools.py
│   │   ├── peer_comparison_tools.py
│   │   └── analyst_consensus_tools.py
│   ├── collectors/               # Data collectors
│   ├── utils/                    # Utility functions
│   └── cache/                    # Caching system
├── tests/
│   ├── unit/                     # Unit tests
│   ├── integration/              # Integration tests
│   └── fixtures/                 # Test data
├── config/                       # Configuration files
├── docs/                         # Documentation
├── requirements.txt
├── development-plan.md
└── README.md

📈 Development Status

  • Phase 1: Core Infrastructure (Completed)
  • Phase 2: Analysis Tools - Weeks 1-5 (Completed)
  • Phase 3: Advanced Analysis Engine - Weeks 6-8
  • Phase 4: Performance & Quality - Weeks 9-10
  • Phase 5: Deployment & Operations - Weeks 11-12

See Development Plan for detailed roadmap.

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Install development dependencies
pip install -r requirements-dev.txt

# Install pre-commit hooks
pre-commit install

# Run tests before committing
python -m pytest

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🔗 Related Resources

📞 Support

🙏 Acknowledgments

  • DART (금융감독원) for providing comprehensive financial data
  • Model Context Protocol team for the excellent framework
  • Korean financial data providers and community

Note: This project is for educational and research purposes. Please ensure compliance with data usage terms and local regulations when using financial data.

Quick Install

Quick Actions

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source