JUHE API Marketplace
theburgerllc avatar
MCP Server

AI Development Pipeline MCP

A Model Context Protocol server that enables seamless integration between Claude AI and development tools like VSCode, Augment, Vercel, Airtable, and Square.

0
GitHub Stars
8/23/2025
Last Updated
MCP Server Configuration
1{
2 "name": "ai-development-pipeline",
3 "command": "npx",
4 "args": [
5 "ts-node",
6 "/path/to/your/project/local-mcp-server.ts"
7 ],
8 "env": {}
9}
JSON9 lines

README Documentation

AI Development Pipeline MCP Integration

A comprehensive Model Context Protocol (MCP) server implementation that enables seamless integration between Claude AI, VSCode, Augment, and various cloud services including Vercel, Airtable, and Square.

🚀 Features

  • Local MCP Server: Direct stdio integration with Claude Desktop
  • Cloud MCP Server: HTTP endpoint for web-based Claude integration
  • 7 Powerful MCP Tools: File operations, shell commands, and AI agent integration
  • Multi-Platform Support: Windows (PowerShell) and Unix (Bash) startup scripts
  • Production Ready: Vercel deployment configuration included

📋 Prerequisites

  • Node.js 18+ and npm
  • TypeScript and ts-node
  • Claude Desktop (for local integration)
  • Vercel account (for cloud deployment)

🛠️ Installation

  1. Clone the repository:
git clone https://github.com/yourusername/ai-development-pipeline-mcp.git
cd ai-development-pipeline-mcp
  1. Install dependencies:
npm install
  1. Configure environment variables:
cp .env.example .env
# Edit .env with your API keys and configuration

🔧 Configuration

Create a .env file in the root directory with the following variables:

# Vercel Configuration
VERCEL_TOKEN=your_vercel_token_here
VERCEL_PROJECT_ID=your_project_id_here

# Airtable Configuration  
AIRTABLE_API_KEY=your_airtable_api_key_here
AIRTABLE_BASE_ID=your_base_id_here
AIRTABLE_TABLE_NAME=your_table_name_here

# Square Configuration
SQUARE_APPLICATION_ID=your_square_app_id_here
SQUARE_ACCESS_TOKEN=your_square_access_token_here

# Analytics Configuration
ANALYTICS_SECRET=your_analytics_secret_here
NEXT_PUBLIC_APP_URL=https://your-app-url.vercel.app

🖥️ Local MCP Server Setup

For Windows (PowerShell):

.\start-mcp.ps1

For Unix/Linux/macOS (Bash):

chmod +x start-mcp.sh
./start-mcp.sh

Manual Start:

npx ts-node local-mcp-server.ts

🔗 Claude Desktop Integration

  1. Start the local MCP server using one of the methods above
  2. Configure Claude Desktop by adding the following to your Claude Desktop configuration:
{
  "mcpServers": {
    "ai-development-pipeline": {
      "command": "npx",
      "args": ["ts-node", "/path/to/your/project/local-mcp-server.ts"],
      "env": {}
    }
  }
}
  1. Restart Claude Desktop to load the MCP server

☁️ Cloud Deployment (Vercel)

Automatic Deployment (Recommended)

  1. Connect to GitHub:

    • Go to Vercel Dashboard
    • Click "New Project" and import your GitHub repository
    • Vercel will automatically detect the configuration
  2. Manual Deployment:

npm install -g vercel
vercel deploy --prod

Build Configuration

The project includes a vercel.json configuration that handles:

  • TypeScript compilation
  • API route setup
  • CORS headers
  • Output directory configuration

Environment Variables

Configure these in your Vercel dashboard:

  • AIRTABLE_API_KEY
  • AIRTABLE_BASE_ID
  • AIRTABLE_TABLE_NAME
  • SQUARE_ACCESS_TOKEN
  • SQUARE_APPLICATION_ID
  • NEXTAUTH_SECRET
  • MCP_API_KEY
  • All other variables from .env.example

Claude Integration

Add to Claude as an HTTP MCP server:

  • URL: https://your-app.vercel.app/api/mcp
  • Method: POST
  • Headers: Content-Type: application/json

🛠️ Available MCP Tools

The server provides 7 powerful tools for AI-driven development:

  1. read_project_file - Read files from the workspace
  2. write_project_file - Write/update files in the workspace
  3. run_shell_command - Execute shell commands (npm, git, etc.)
  4. check_file_exists - Check if files exist
  5. list_directory_files - List directory contents
  6. run_augment_prompt - Send prompts to Augment coding agent
  7. run_project_tests - Execute project tests

📁 Project Structure

ai-development-pipeline-mcp/
├── app/
│   └── api/
│       └── mcp/
│           └── route.ts          # Cloud MCP endpoint
├── src/
│   └── hello.ts                  # Example TypeScript module
├── local-mcp-server.ts           # Local MCP server implementation
├── start-mcp.sh                  # Unix startup script
├── start-mcp.ps1                 # Windows startup script
├── package.json                  # Dependencies and scripts
├── tsconfig.json                 # TypeScript configuration
├── .env.example                  # Environment template
└── README.md                     # This file

🧪 Testing

Run the TypeScript compiler to check for errors:

npx tsc --noEmit

Test the local MCP server:

npx ts-node local-mcp-server.ts

🔒 Security Considerations

  • Never commit .env files - They contain sensitive API keys
  • Use environment variables for all secrets in production
  • Review API permissions before deploying to production
  • Enable proper authentication for cloud deployments

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Troubleshooting

Common Issues:

"Module not found" errors:

  • Ensure all dependencies are installed: npm install
  • Check TypeScript configuration in tsconfig.json

MCP server won't start:

  • Verify Node.js version (18+ required)
  • Check that ts-node is available: npx ts-node --version

Claude Desktop integration issues:

  • Ensure the MCP server is running before starting Claude
  • Check the file path in Claude Desktop configuration
  • Restart Claude Desktop after configuration changes

Getting Help:

🔗 Related Projects

📊 Project Status

Ready for Production

  • Local MCP server fully functional
  • Cloud deployment configured
  • All 7 MCP tools tested and validated
  • Cross-platform startup scripts included
  • Comprehensive documentation provided

Built with ❤️ for the AI development community

Quick Install

Quick Actions

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source