JUHE API Marketplace
tgf-between-your-legs avatar
MCP Server

SDOF Knowledge Base

A Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow.

1
GitHub Stars
8/23/2025
Last Updated
MCP Server Configuration
1{
2 "name": "sdof_knowledge_base",
3 "type": "stdio",
4 "command": "node",
5 "args": [
6 "path/to/sdof-mcp/build/index.js"
7 ],
8 "env": {
9 "OPENAI_API_KEY": "your-openai-api-key"
10 },
11 "alwaysAllow": [
12 "store_sdof_plan"
13 ]
14}
JSON14 lines

README Documentation

SDOF MCP - Structured Decision Optimization Framework

Next-generation knowledge management system with 5-phase optimization workflow

The Structured Decision Optimization Framework (SDOF) Knowledge Base is a Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow.

🚀 Quick Start

Prerequisites

  • Node.js 18+
  • OpenAI API Key (for embeddings)
  • MCP-compatible client (Claude Desktop, etc.)

Installation

# Clone the repository
git clone https://github.com/your-username/sdof-mcp.git
cd sdof-mcp

# Install dependencies
npm install
npm run build

# Configure environment
cp .env.example .env
# Edit .env with your OpenAI API key

# Start the server
npm start

📖 Documentation

✨ Features

🎯 5-Phase Optimization Workflow

  • Phase 1: Exploration - Solution discovery and brainstorming
  • Phase 2: Analysis - Detailed evaluation and optimization
  • Phase 3: Implementation - Code development and testing
  • Phase 4: Evaluation - Performance and quality assessment
  • Phase 5: Integration - Learning consolidation and documentation

🧠 Advanced Knowledge Management

  • Vector Embeddings: Semantic search with OpenAI embeddings
  • Persistent Storage: MongoDB/SQLite with vector indexing
  • Prompt Caching: Optimized for LLM efficiency
  • Schema Validation: Structured content types
  • Multi-Interface: Both MCP tools and HTTP API

🔧 Content Types

  • text - General documentation and notes
  • code - Code implementations and examples
  • decision - Decision records and rationale
  • analysis - Analysis results and findings
  • solution - Solution descriptions and designs
  • evaluation - Evaluation reports and metrics
  • integration - Integration documentation and guides

🛠️ MCP Tools

Primary Tool: store_sdof_plan

Store structured knowledge with metadata:

{
  plan_content: string;        // Markdown content
  metadata: {
    planTitle: string;         // Descriptive title
    planType: ContentType;     // Content type (text, code, decision, etc.)
    tags?: string[];           // Categorization tags
    phase?: string;            // SDOF phase (1-5)
    cache_hint?: boolean;      // Mark for prompt caching
  }
}

Example Usage

// Store a decision record
{
  "server_name": "sdof_knowledge_base",
  "tool_name": "store_sdof_plan",
  "arguments": {
    "plan_content": "# Database Selection\n\nChose MongoDB for vector storage due to...",
    "metadata": {
      "planTitle": "Database Architecture Decision",
      "planType": "decision",
      "tags": ["database", "architecture"],
      "phase": "2",
      "cache_hint": true
    }
  }
}

🏗️ Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   AI Clients    │───▶│  SDOF Knowledge  │───▶│   Database      │
│ (Claude, etc.)  │    │     Base MCP     │    │  (MongoDB/      │
└─────────────────┘    │    Server        │    │   SQLite)       │
                       └──────────────────┘    └─────────────────┘
                                │
                                ▼
                       ┌──────────────────┐
                       │   HTTP API       │
                       │  (Port 3000)     │
                       └──────────────────┘

🔧 Configuration

MCP Client Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "sdof_knowledge_base": {
      "type": "stdio",
      "command": "node",
      "args": ["path/to/sdof-mcp/build/index.js"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key"
      },
      "alwaysAllow": ["store_sdof_plan"]
    }
  }
}

Environment Variables

# Required
OPENAI_API_KEY=sk-proj-your-openai-api-key

# Optional
EMBEDDING_MODEL=text-embedding-3-small
HTTP_PORT=3000
MONGODB_URI=mongodb://localhost:27017/sdof

🧪 Testing

# Run tests
npm test

# Run system validation
node build/test-unified-system.js

# Performance benchmarks
npm run test:performance

📊 Performance

Target metrics:

  • Query Response: <500ms average
  • Embedding Generation: <2s per request
  • Vector Search: <100ms for similarity calculations
  • Database Operations: <50ms for CRUD operations

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make changes to TypeScript files in src/
  4. Run tests: npm test
  5. Build: npm run build
  6. Commit changes: git commit -m 'Add amazing feature'
  7. Push to branch: git push origin feature/amazing-feature
  8. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

🎉 Success Indicators

You know the system is working correctly when:

  • ✅ No authentication errors in logs
  • store_sdof_plan tool responds successfully
  • ✅ Knowledge entries are stored and retrievable
  • ✅ Query performance meets targets (<500ms)
  • ✅ Test suite passes completely

Built with ❤️ for the AI community

Quick Install

Quick Actions

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source