JUHE API Marketplace
sourangshupal avatar
MCP Server

MCP-RAG Server

Implements Retrieval-Augmented Generation (RAG) using GroundX and OpenAI, allowing users to ingest documents and perform semantic searches with advanced context handling through Modern Context Processing (MCP).

4
GitHub Stars
8/20/2025
Last Updated
No Configuration
Please check the documentation below.

README Documentation

MCP-RAG: Model Context Protocol with RAG 🚀

A powerful and efficient RAG (Retrieval-Augmented Generation) implementation using GroundX and OpenAI, built with Modern Context Processing (MCP).

🌟 Features

  • Advanced RAG Implementation: Utilizes GroundX for high-accuracy document retrieval
  • Model Context Protocol: Seamless integration with MCP for enhanced context handling
  • Type-Safe: Built with Pydantic for robust type checking and validation
  • Flexible Configuration: Easy-to-customize settings through environment variables
  • Document Ingestion: Support for PDF document ingestion and processing
  • Intelligent Search: Semantic search capabilities with scoring

🛠️ Prerequisites

  • Python 3.12 or higher
  • OpenAI API key
  • GroundX API key
  • MCP CLI tools

📦 Installation

  1. Clone the repository:
git clone <repository-url>
cd mcp-rag
  1. Create and activate a virtual environment:
uv sync
source .venv/bin/activate  # On Windows, use `.venv\Scripts\activate`

⚙️ Configuration

  1. Copy the example environment file:
cp .env.example .env
  1. Configure your environment variables in .env:
GROUNDX_API_KEY="your-groundx-api-key"
OPENAI_API_KEY="your-openai-api-key"
BUCKET_ID="your-bucket-id"

🚀 Usage

Starting the Server

Run the inspect server using:

mcp dev server.py

Document Ingestion

To ingest new documents:

from server import ingest_documents

result = ingest_documents("path/to/your/document.pdf")
print(result)

Performing Searches

Basic search query:

from server import process_search_query

response = process_search_query("your search query here")
print(f"Query: {response.query}")
print(f"Score: {response.score}")
print(f"Result: {response.result}")

With custom configuration:

from server import process_search_query, SearchConfig

config = SearchConfig(
    completion_model="gpt-4",
    bucket_id="custom-bucket-id"
)
response = process_search_query("your query", config)

📚 Dependencies

  • groundx (≥2.3.0): Core RAG functionality
  • openai (≥1.75.0): OpenAI API integration
  • mcp[cli] (≥1.6.0): Modern Context Processing tools
  • ipykernel (≥6.29.5): Jupyter notebook support

🔒 Security

  • Never commit your .env file containing API keys
  • Use environment variables for all sensitive information
  • Regularly rotate your API keys
  • Monitor API usage for any unauthorized access

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Quick Actions

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source