MCP Log Analyzer
A Model Context Protocol server that analyzes various log types on Windows systems, allowing users to register, query, and analyze logs from different sources including Windows Event Logs, ETL files, and structured/unstructured text logs.
README Documentation
MCP Log Analyzer
A Model Context Protocol (MCP) server for analyzing different types of logs on Windows systems, built with the FastMCP framework.
Features
-
Multiple Log Format Support
- Windows Event Logs (EVT/EVTX)
- Windows Event Trace Logs (ETL)
- Structured Logs (JSON, XML)
- CSV Logs
- Unstructured Text Logs
-
MCP Tools
register_log_source
: Register new log sourceslist_log_sources
: View all registered sourcesget_log_source
: Get details about a specific sourcedelete_log_source
: Remove a log sourcequery_logs
: Query logs with filters and paginationanalyze_logs
: Perform analysis (summary, pattern, anomaly)
-
MCP Resources
logs://sources
: View registered log sourceslogs://types
: Learn about supported log typeslogs://analysis-types
: Understand analysis optionssystem://windows-event-logs
: Recent Windows System and Application event logssystem://linux-logs
: Linux systemd journal and application logssystem://process-list
: Current processes with PID, CPU, and memory usagesystem://netstat
: Network connections and statistics for troubleshooting
-
MCP Prompts
- Log analysis quickstart guide
- Troubleshooting guide
- Windows Event Log specific guide
Installation
# Clone the repository
git clone https://github.com/your-username/mcp-log-analyzer.git
cd mcp-log-analyzer
# Install the package
pip install -e .
# For ETL file support (optional)
pip install -e ".[etl]"
# For development dependencies
pip install -e ".[dev]"
Windows Setup
On Windows, the package includes Windows Event Log support via pywin32
. If you encounter import errors:
# Ensure Windows dependencies are installed
pip install pywin32>=300
# Test the setup
python test_windows_setup.py
# If successful, start the server
python main.py
Note: On first install of pywin32
, you may need to run the post-install script:
python Scripts/pywin32_postinstall.py -install
Usage
Understanding MCP Servers
MCP (Model Context Protocol) servers don't have traditional web endpoints. They communicate via stdin/stdout with MCP clients (like Claude Code). When you run python main.py
, the server starts silently and waits for MCP protocol messages.
Testing the Server
# Test that the server is working
python check_server.py
# See usage instructions
python check_server.py --usage
Starting the MCP Server
# Run directly
python main.py
# Or use Claude Code's MCP integration
claude mcp add mcp-log-analyzer python main.py
Using with Claude Code
-
Add the server to Claude Code:
claude mcp add mcp-log-analyzer python /path/to/main.py
-
Use the tools in Claude Code:
- Register a log source: Use the
register_log_source
tool - Query logs: Use the
query_logs
tool - Analyze logs: Use the
analyze_logs
tool
- Register a log source: Use the
-
Access resources:
- Reference resources using
@mcp-log-analyzer:logs://sources
- Get help with prompts like
/mcp__mcp-log-analyzer__log_analysis_quickstart
- Reference resources using
System Monitoring Resources
These resources provide real-time system information without needing to register log sources:
-
Check System Processes:
- Access via
@mcp-log-analyzer:system://process-list
- Shows top processes by CPU usage with memory information
- Access via
-
Windows Event Logs (Windows only):
- Default:
@mcp-log-analyzer:system://windows-event-logs
(last 10 entries) - By count:
@mcp-log-analyzer:system://windows-event-logs/last/50
(last 50 entries) - By time:
@mcp-log-analyzer:system://windows-event-logs/time/30m
(last 30 minutes) - By range:
@mcp-log-analyzer:system://windows-event-logs/range/2025-01-07 13:00/2025-01-07 14:00
- Shows System and Application event log entries
- Default:
-
Linux System Logs (Linux only):
- Default:
@mcp-log-analyzer:system://linux-logs
(last 50 lines) - By count:
@mcp-log-analyzer:system://linux-logs/last/100
(last 100 lines) - By time:
@mcp-log-analyzer:system://linux-logs/time/1h
(last hour) - By range:
@mcp-log-analyzer:system://linux-logs/range/2025-01-07 13:00/2025-01-07 14:00
- Shows systemd journal, syslog, and common application logs
- Default:
-
Network Monitoring (Cross-platform):
- Default:
@mcp-log-analyzer:system://netstat
(listening ports) - Listening ports:
@mcp-log-analyzer:system://netstat/listening
- Established connections:
@mcp-log-analyzer:system://netstat/established
- All connections:
@mcp-log-analyzer:system://netstat/all
- Network statistics:
@mcp-log-analyzer:system://netstat/stats
- Routing table:
@mcp-log-analyzer:system://netstat/routing
- Port-specific:
@mcp-log-analyzer:system://netstat/port/80
- Uses netstat on Windows, ss (preferred) or netstat on Linux
- Default:
Time Format Examples:
- Relative time:
30m
(30 minutes),2h
(2 hours),1d
(1 day) - Absolute time:
2025-01-07 13:00
,2025-01-07 13:30:15
,07/01/2025 13:00
Example Workflow
-
Register a Windows System Log:
Use register_log_source tool with: - name: "system-logs" - source_type: "evt" - path: "System"
-
Query Recent Errors:
Use query_logs tool with: - source_name: "system-logs" - filters: {"level": "Error"} - limit: 10
-
Analyze Patterns:
Use analyze_logs tool with: - source_name: "system-logs" - analysis_type: "pattern"
-
Register an ETL File:
Use register_log_source tool with: - name: "network-trace" - source_type: "etl" - path: "C:\\Traces\\network.etl"
Development
# Run tests
pytest
# Code formatting
black .
isort .
# Type checking
mypy src
# Run all quality checks
black . && isort . && mypy src && flake8
Project Structure
src/mcp_log_analyzer/
: Main packagemcp_server/
: MCP server implementation using FastMCPcore/
: Core functionality and modelsparsers/
: Log parsers for different formats
main.py
: Server entry point.mcp.json
: MCP configurationtests/
: Test files
Requirements
- Python 3.12+
- Windows OS (for Event Log support)
- See
pyproject.toml
for full dependencies
License
MIT