MCP Video Recognition Server
Provides tools for image, audio, and video recognition using Google's Gemini AI through the Model Context Protocol.
README Documentation
MCP Video Recognition Server
An MCP (Model Context Protocol) server that provides tools for image, audio, and video recognition using Google's Gemini AI.
Features
- Image Recognition: Analyze and describe images using Google Gemini AI
- Audio Recognition: Analyze and transcribe audio using Google Gemini AI
- Video Recognition: Analyze and describe videos using Google Gemini AI
Prerequisites
- Node.js 18 or higher
- Google Gemini API key
Installation
Manual Installation
-
Clone the repository:
git clone https://github.com/yourusername/mcp-video-recognition.git cd mcp-video-recognition
-
Install dependencies:
npm install
-
Build the project:
npm run build
Installing in FLUJO
- Click Add Server
- Copy & Paste Github URL into FLUJO
- Click Parse, Clone, Install, Build and Save.
Installing via Configuration Files
To integrate this MCP server with Cline or other MCP clients via configuration files:
-
Open your Cline settings:
- In VS Code, go to File -> Preferences -> Settings
- Search for "Cline MCP Settings"
- Click "Edit in settings.json"
-
Add the server configuration to the
mcpServers
object:{ "mcpServers": { "video-recognition": { "command": "node", "args": [ "/path/to/mcp-video-recognition/dist/index.js" ], "disabled": false, "autoApprove": [] } } }
-
Replace
/path/to/mcp-video-recognition/dist/index.js
with the actual path to theindex.js
file in your project directory. Use forward slashes (/) or double backslashes (\\) for the path on Windows. -
Save the settings file. Cline should automatically connect to the server.
Configuration
The server is configured using environment variables:
GOOGLE_API_KEY
(required): Your Google Gemini API keyTRANSPORT_TYPE
: Transport type to use (stdio
orsse
, defaults tostdio
)PORT
: Port number for SSE transport (defaults to 3000)LOG_LEVEL
: Logging level (verbose
,debug
,info
,warn
,error
, defaults toinfo
)
Usage
Starting the Server
With stdio Transport (Default)
GOOGLE_API_KEY=your_api_key npm start
With SSE Transport
GOOGLE_API_KEY=your_api_key TRANSPORT_TYPE=sse PORT=3000 npm start
Using the Tools
The server provides three tools that can be called by MCP clients:
Image Recognition
{
"name": "image_recognition",
"arguments": {
"filepath": "/path/to/image.jpg",
"prompt": "Describe this image in detail",
"modelname": "gemini-2.0-flash"
}
}
Audio Recognition
{
"name": "audio_recognition",
"arguments": {
"filepath": "/path/to/audio.mp3",
"prompt": "Transcribe this audio",
"modelname": "gemini-2.0-flash"
}
}
Video Recognition
{
"name": "video_recognition",
"arguments": {
"filepath": "/path/to/video.mp4",
"prompt": "Describe what happens in this video",
"modelname": "gemini-2.0-flash"
}
}
Tool Parameters
All tools accept the following parameters:
filepath
(required): Path to the media file to analyzeprompt
(optional): Custom prompt for the recognition (defaults to "Describe this content")modelname
(optional): Gemini model to use for recognition (defaults to "gemini-2.0-flash")
Development
Running in Development Mode
GOOGLE_API_KEY=your_api_key npm run dev
Project Structure
src/index.ts
: Entry pointsrc/server.ts
: MCP server implementationsrc/tools/
: Tool implementationssrc/services/
: Service implementations (Gemini API)src/types/
: Type definitionssrc/utils/
: Utility functions
License
MIT