SerpApi MCP Server
An MCP server that integrates with SerpApi to retrieve search results from multiple search engines including Google, Bing, Yahoo, and others, enabling fast access to both live and archived search data.
README Documentation
SerpApi MCP Server
A Model Context Protocol (MCP) server implementation that integrates with SerpApi for comprehensive search engine results and data extraction.
Features
- Multi-Engine Search: Google, Bing, Yahoo, DuckDuckGo, Yandex, Baidu, YouTube, eBay, Walmart, and more
- Real-time Weather Data: Location-based weather with forecasts via search queries
- Stock Market Data: Company financials and market data through search integration
- Dynamic Result Processing: Automatically detects and formats different result types
- Raw JSON Support: Option to return full unprocessed API responses
- Structured Results: Clean, formatted output optimized for AI consumption
- Rate Limit Handling: Automatic retry logic with exponential backoff
- Error Recovery: Comprehensive error handling and user feedback
Installation
git clone https://github.com/serpapi/mcp-server.git
cd mcp-server
uv sync
Configuration
API Key Authentication
This server supports two methods for providing your SerpApi API key:
- Path-based (recommended): Include your API key directly in the URL path
- Header-based: Pass your API key in the Authorization header
Required
- SerpApi API Key: Get your API key from serpapi.com/manage-api-key
Setup Steps
- Get API Key: Sign up at SerpApi and get your API key
- Run Server:
uv run src/server.py - Access with API Key: Use either method below to authenticate your requests
Running with Docker
# Build the image
docker build -t serpapi-mcp-server .
# Run the container (no environment variables needed)
docker run -p 8000:8000 serpapi-mcp-server
The server will be available at http://localhost:8000. Include your API key in the request path or headers as shown below.
Client Configurations
Claude Desktop
Method 1: Path-based API Key (Recommended)
Add to your claude_desktop_config.json:
{
"mcpServers": {
"serpapi": {
"url": "http://localhost:8000/YOUR_SERPAPI_API_KEY/v1/mcp"
}
}
}
Method 2: Authorization Header
Add to your claude_desktop_config.json:
{
"mcpServers": {
"serpapi": {
"url": "http://localhost:8000/v1/mcp",
"headers": {
"Authorization": "Bearer YOUR_SERPAPI_API_KEY"
}
}
}
}
Production Deployment
For production deployments, use your domain:
{
"mcpServers": {
"serpapi": {
"url": "https://yourdomain.com/YOUR_SERPAPI_API_KEY/v1/mcp"
}
}
}
Authentication Examples
cURL Examples
Path-based Authentication
curl -X POST "http://localhost:8000/your_serpapi_key/v1/mcp" \
-H "Content-Type: application/json" \
-d '{"method": "tools/call", "params": {"name": "search", "arguments": {"params": {"q": "weather in London"}}}}'
Header-based Authentication
curl -X POST "http://localhost:8000/v1/mcp" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your_serpapi_key" \
-d '{"method": "tools/call", "params": {"name": "search", "arguments": {"params": {"q": "weather in London"}}}}'
Client Library Examples
Both authentication methods work seamlessly with MCP clients. The server automatically detects and validates your API key from either the URL path or Authorization header.
Available Tools
Universal Search Tool (search)
The consolidated search tool that handles all search types through a single interface.
Best for:
- Any type of search query (web, weather, stock, images, news, shopping)
- Unified interface across all search engines and result types
- Both formatted output and raw JSON responses
Parameters:
params(Dict): Search parameters including:q(str): Search query (required)engine(str): Search engine (default: "google_light")location(str): Geographic location filternum(int): Number of results (default: 10)
raw(bool): Return raw JSON response (default: false)
Usage Examples:
General Search
{
"name": "search",
"arguments": {
"params": {
"q": "best coffee shops",
"engine": "google",
"location": "Austin, TX"
}
}
}
Weather Search
{
"name": "search",
"arguments": {
"params": {
"q": "weather in London",
"engine": "google"
}
}
}
Stock Market Search
{
"name": "search",
"arguments": {
"params": {
"q": "AAPL stock price",
"engine": "google"
}
}
}
News Search
{
"name": "search",
"arguments": {
"params": {
"q": "latest AI developments",
"engine": "google",
"tbm": "nws"
}
}
}
Raw JSON Output
{
"name": "search",
"arguments": {
"params": {
"q": "machine learning",
"engine": "google"
},
"raw": true
}
}
Supported Search Engines
- Google (
google) - Full Google search results - Google Light (
google_light) - Faster, lightweight Google results (default) - Bing (
bing) - Microsoft Bing search - Yahoo (
yahoo) - Yahoo search results - DuckDuckGo (
duckduckgo) - Privacy-focused search - Yandex (
yandex) - Russian search engine - Baidu (
baidu) - Chinese search engine - YouTube (
youtube_search) - Video search - eBay (
ebay) - Product search - Walmart (
walmart) - Product search
For a complete list, visit SerpApi Engines.
Result Types
The search tool automatically detects and formats different result types:
- Answer Box: Weather data, stock prices, knowledge graph, calculations
- Organic Results: Traditional web search results
- News Results: News articles with source and date
- Image Results: Images with thumbnails and links
- Shopping Results: Product listings with prices and sources
Results are prioritized and formatted for optimal readability.
Error Handling
The server provides comprehensive error handling:
- Rate Limiting: Automatic retry with exponential backoff
- Authentication: Clear API key validation messages
- Network Issues: Graceful degradation and error reporting
- Invalid Parameters: Helpful parameter validation
Common error responses:
{
"error": "Rate limit exceeded. Please try again later."
}
Development
Running in Development Mode
# Install dependencies
uv sync
# Run server directly
uv run src/server.py
Using MCP Inspector
The MCP Inspector provides a web interface for testing MCP tools.
# Install (requires Node.js)
npm install -g @modelcontextprotocol/inspector
# Run inspector
npx @modelcontextprotocol/inspector
Then configure:
- Path-based: URL
localhost:8000/YOUR_API_KEY/v1/mcp, Transport "Streamable HTTP transport" - Header-based: URL
localhost:8000/v1/mcp, Transport "Streamable HTTP transport", and add Authorization headerBearer YOUR_API_KEY
Click "List tools" to start testing.
Project Structure
serpapi-mcp-server/
├── src/
│ └── server.py # Main MCP server implementation
├── pyproject.toml # Project configuration
├── README.md # This file
├── LICENSE # MIT License
└── .env.example # Environment template
Usage Examples
Basic Search
# Search for information
result = await client.call_tool("search", {
"params": {
"q": "MCP protocol documentation",
"engine": "google"
}
})
Weather Query
# Get weather information
weather = await client.call_tool("search", {
"params": {
"q": "weather in San Francisco with forecast",
"engine": "google"
}
})
Stock Information
# Get stock data
stock = await client.call_tool("search", {
"params": {
"q": "Tesla stock price and market cap",
"engine": "google"
}
})
Raw JSON Response
# Get full API response
raw_data = await client.call_tool("search", {
"params": {
"q": "artificial intelligence",
"engine": "google"
},
"raw": True
})
Troubleshooting
Common Issues
"Missing API key" Error:
- Ensure your API key is included in the URL path:
/{YOUR_API_KEY}/v1/mcp - Or verify the Authorization header:
Bearer YOUR_API_KEY - Verify your API key at serpapi.com/manage-api-key
"Invalid SerpApi API key" Error:
- Check your API key is valid at serpapi.com/manage-api-key
- Ensure the API key in the path or header is correctly formatted
- Verify your SerpApi subscription is active
"Rate limit exceeded" Error:
- Wait for the retry period
- Consider upgrading your SerpApi plan
- Reduce request frequency
"Module not found" Error:
- Ensure dependencies are installed:
uv installorpip install mcp serpapi python-dotenv - Check Python version compatibility (3.13+ required)
"No results found" Error:
- Try adjusting your search query
- Use a different search engine
- Check if the query is valid for the selected engine
Contributing
- Fork the repository
- Create your feature branch:
git checkout -b feature/amazing-feature - Install dependencies:
uv install - Make your changes
- Commit changes:
git commit -m 'Add amazing feature' - Push to branch:
git push origin feature/amazing-feature - Open a Pull Request
License
MIT License - see LICENSE file for details.