JUHE API Marketplace
gramanoid avatar
MCP Server

MCP Orchestrator

A sophisticated server that coordinates multiple LLMs (Claude, Gemini, etc.) using the Model Context Protocol to enhance reasoning capabilities through strategies like progressive deep dive and consensus-based approaches.

0
GitHub Stars
8/18/2025
Last Updated
No Configuration
Please check the documentation below.

README Documentation

MCP Orchestrator

A sophisticated Model Context Protocol (MCP) server that orchestrates external AI models (Gemini 2.5 Pro and O3) to provide additional perspectives and insights when using Claude. The orchestrator exclusively uses external models since users are already interacting with Claude directly.

Architecture Overview

When you interact with Claude, this MCP server provides tools to consult external models for additional perspectives:

  • Gemini 2.5 Pro (via OpenRouter): Alternative analysis and perspectives
  • O3 (via OpenAI): Architectural and system design insights

Note: The orchestrator does NOT use Claude models since you're already talking to Claude. It exclusively orchestrates external models to enhance your Claude experience.

Features

  • External Model Enhancement: Get perspectives from Gemini 2.5 Pro and O3 to supplement Claude's responses
  • Network Bridges: REST API (port 5050) and WebSocket (port 8765) for integration with any application
  • Advanced Reasoning Strategies: External enhancement and multi-model council approaches
  • MCP-Compliant: Full adherence to Model Context Protocol standards
  • Secure by Design: Non-root execution, encrypted storage, API key protection
  • Docker Support: Production-ready containerization with health checks
  • Cost Controls: Built-in request and daily spending limits
  • Bug-Free: All known issues fixed including ResponseSynthesizer and lifecycle management

Quick Start

1. Clone and Configure

git clone https://github.com/gramanoid/mcp_orchestrator
cd mcp_orchestrator

# Create .env file with your API keys
cat > .env << EOF
OPENROUTER_API_KEY=your_openrouter_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
EOF

2. Deploy with Docker

# Deploy the service
./scripts/deploy.sh

# Check status
./scripts/deploy.sh status

# View logs
./scripts/deploy.sh logs

3. Start Network Services (Optional)

# Start REST API and WebSocket bridges for network access
./start_network_services.sh

# Test REST API
curl -X POST http://localhost:5050/mcp/get_orchestrator_status

# Test WebSocket (see examples/integration_example.py)

4. Use with MCP Clients

The orchestrator exposes 13 MCP tools that allow Claude to get external perspectives:

  • orchestrate_task: Get external model perspectives on any task
  • analyze_task: Analyze task complexity with external models
  • query_specific_model: Query Gemini 2.5 Pro or O3 directly
  • code_review: Get external code review perspectives
  • think_deeper: Request deeper analysis from external models
  • multi_model_review: Get multiple external perspectives
  • comparative_analysis: Compare solutions using external models
  • And more tools for specific use cases

Architecture

┌──────────┐     ┌─────────────┐     ┌──────────────┐     ┌──────────────┐
│   User   │────▶│   Claude    │────▶│MCP Orchestra │────▶│External Models│
└──────────┘     │   (You)     │     │   tor        │     │Gemini 2.5 Pro│
                 └─────────────┘     └──────────────┘     │     O3       │
                        │                    ▲              └──────────────┘
                        │                    │
                        └────────────────────┘
                         MCP Tools Usage

The flow:

  1. User asks Claude a question
  2. Claude responds directly (primary interaction)
  3. Claude can optionally use MCP tools to get external perspectives
  4. MCP Orchestrator queries ONLY external models (Gemini 2.5 Pro and/or O3)
  5. External insights are integrated into Claude's response

Configuration

Environment Variables

VariableDescriptionDefault
OPENROUTER_API_KEYYour OpenRouter API key (for Gemini 2.5 Pro)Required
OPENAI_API_KEYYour OpenAI API key (for O3)Required
MCP_LOG_LEVELLogging levelINFO
MCP_MAX_COST_PER_REQUESTMax cost per request ($)5.0
MCP_DAILY_LIMITDaily spending limit ($)100.0

Strategy Configuration

Edit config/config.yaml to customize:

models:
  gemini_pro:
    provider: openrouter
    model_id: google/gemini-2.5-pro-preview
    max_tokens: 32768
    temperature: 0.7
    
  o3_architect:
    provider: openai
    model_id: o3
    max_tokens: 16384
    temperature: 0.8

strategies:
  external_enhancement:
    models:
      - gemini_pro
      - o3_architect
    
  max_quality_council:
    models:
      - gemini_pro
      - o3_architect
    require_consensus: true

Integration Options

REST API

import requests

response = requests.post('http://localhost:5050/mcp/orchestrate_task', 
    json={
        "description": "Analyze this architecture decision",
        "strategy": "external_enhancement"
    }
)
print(response.json()['result'])

WebSocket

const ws = new WebSocket('ws://localhost:8765');
ws.send(JSON.stringify({
    method: 'query_specific_model',
    params: {
        model: 'gemini_pro',
        description: 'What are React best practices?'
    }
}));

See INTEGRATION_EXAMPLES.md for more examples in various languages.

Development

Local Setup

# Create virtual environment
python -m venv venv
source venv/bin/activate  # or venv\Scripts\activate on Windows

# Install dependencies
pip install -r requirements.txt

# Run tests
pytest tests/

# Run locally
python -m src.mcp_server

Testing with Client

# See scripts/mcp-client.py for example usage
python scripts/mcp-client.py

Security

  • Runs as non-root user in containers
  • Read-only filesystem with specific writable volumes
  • Encrypted credential storage
  • No capabilities beyond essentials
  • Resource limits enforced

Monitoring

  • JSON structured logging
  • Health checks every 30s
  • Log rotation (3 files, 10MB each)
  • Cost tracking and limits

Troubleshooting

Container won't start

# Check logs
docker-compose logs

# Verify environment
docker-compose config

API errors

  • Verify API key in .env
  • Check rate limits and quotas
  • Review logs for specific errors

Memory issues

  • Adjust mem_limit in docker-compose.yml
  • Monitor with docker stats

License

MIT License - see LICENSE file for details

Quick Actions

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source