JUHE API Marketplace
gmacev avatar
MCP Server

Simple Memory Extension MCP Server

An MCP server that extends AI agents' context window by providing tools to store, retrieve, and search memories, allowing agents to maintain history and context across long interactions.

9
GitHub Stars
11/17/2025
Last Updated
No Configuration
Please check the documentation below.
  1. Home
  2. MCP Servers
  3. Simple-Memory-Extension-MCP-Server

README Documentation

Simple Memory Extension MCP Server

An MCP server to extend the context window / memory of agents. Useful when coding big features or vibe coding and need to store/recall progress, key moments or changes or anything worth remembering. Simply ask the agent to store memories and recall whenever you need or ask the agent to fully manage its memory (through cursor rules for example) however it sees fit.

Usage

Starting the Server

npm install
npm start

Available Tools

Context Item Management

  • store_context_item - Store a value with key in namespace
  • retrieve_context_item_by_key - Get value by key
  • delete_context_item - Delete key-value pair

Namespace Management

  • create_namespace - Create new namespace
  • delete_namespace - Delete namespace and all contents
  • list_namespaces - List all namespaces
  • list_context_item_keys - List keys in a namespace

Semantic Search

  • retrieve_context_items_by_semantic_search - Find items by meaning

Semantic Search Implementation

  1. Query converted to vector using E5 model
  2. Text automatically split into chunks for better matching
  3. Cosine similarity calculated between query and stored chunks
  4. Results filtered by threshold and sorted by similarity
  5. Top matches returned with full item values

Development

# Dev server
npm run dev

# Format code
npm run format

.env

# Path to SQLite database file
DB_PATH=./data/context.db

PORT=3000

# Use HTTP SSE or Stdio
USE_HTTP_SSE=true

# Logging Configuration: debug, info, warn, error
LOG_LEVEL=info

Semantic Search

This project includes semantic search capabilities using the E5 embedding model from Hugging Face. This allows you to find context items based on their meaning rather than just exact key matches.

Setup

The semantic search feature requires Python dependencies, but these should be automatically installed when you run: npm run start

Embedding Model

We use the intfloat/multilingual-e5-large-instruct

Notes

Developed mostly while vibe coding, so don't expect much :D. But it works, and I found it helpful so w/e. Feel free to contribute or suggest improvements.

Quick Actions

View on GitHubView All Servers

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source

Boost your projects with Wisdom Gate LLM API

Supporting GPT-5, Claude-4, DeepSeek v3, Gemini and more.

Enjoy a free trial and save 20%+ compared to official pricing.

Learn More
JUHE API Marketplace

Accelerate development, innovate faster, and transform your business with our comprehensive API ecosystem.

JUHE API VS

  • vs. RapidAPI
  • vs. API Layer
  • API Platforms 2025
  • API Marketplaces 2025
  • Best Alternatives to RapidAPI

For Developers

  • Console
  • Collections
  • Documentation
  • MCP Servers
  • Free APIs
  • Temp Mail Demo

Product

  • Browse APIs
  • Suggest an API
  • Wisdom Gate LLM
  • Global SMS Messaging
  • Temp Mail API

Company

  • What's New
  • Welcome
  • About Us
  • Contact Support
  • Terms of Service
  • Privacy Policy
Featured on Startup FameFeatured on Twelve ToolsFazier badgeJuheAPI Marketplace - Connect smarter, beyond APIs | Product Huntai tools code.marketDang.ai
Copyright © 2025 - All rights reserved