JUHE API Marketplace
doobidoo avatar
MCP Server

MCP Memory Service

Provides semantic memory and persistent storage for Claude, leveraging ChromaDB and sentence transformers for enhanced search and retrieval capabilities.

711
GitHub Stars
9/23/2025
Last Updated
MCP Server Configuration
1{
2 "name": "memory",
3 "command": "python",
4 "args": [
5 "-m",
6 "mcp_memory_service.server"
7 ],
8 "env": {
9 "MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec"
10 }
11}
JSON11 lines

README Documentation

MCP Memory Service

Universal MCP memory service providing semantic memory search and persistent storage for AI assistants. Works with Claude Desktop, VS Code, Cursor, Continue, and 13+ AI applications with SQLite-vec for fast local search and Cloudflare for global distribution.

MCP Memory Service

🚀 Quick Start (2 minutes)

Universal Installer (Recommended)

# Clone and install with automatic platform detection
git clone https://github.com/doobidoo/mcp-memory-service.git
cd mcp-memory-service
python install.py

Docker (Fastest)

# For MCP protocol (Claude Desktop)
docker-compose up -d

# For HTTP API (Web Dashboard)
docker-compose -f docker-compose.http.yml up -d

Smithery (Claude Desktop)

# Auto-install for Claude Desktop
npx -y @smithery/cli install @doobidoo/mcp-memory-service --client claude

⚠️ v6.17.0+ Script Migration Notice

Updating from an older version? Scripts have been reorganized for better maintainability:

  • Recommended: Use python -m mcp_memory_service.server in your Claude Desktop config (no path dependencies!)
  • Alternative 1: Use uv run memory server with UV tooling
  • Alternative 2: Update path from scripts/run_memory_server.py to scripts/server/run_memory_server.py
  • Backward compatible: Old path still works with a migration notice

⚠️ First-Time Setup Expectations

On your first run, you'll see some warnings that are completely normal:

  • "WARNING: Failed to load from cache: No snapshots directory" - The service is checking for cached models (first-time setup)
  • "WARNING: Using TRANSFORMERS_CACHE is deprecated" - Informational warning, doesn't affect functionality
  • Model download in progress - The service automatically downloads a ~25MB embedding model (takes 1-2 minutes)

These warnings disappear after the first successful run. The service is working correctly! For details, see our First-Time Setup Guide.

🐍 Python 3.13 Compatibility Note

sqlite-vec may not have pre-built wheels for Python 3.13 yet. If installation fails:

  • The installer will automatically try multiple installation methods
  • Consider using Python 3.12 for the smoothest experience: brew install python@3.12
  • Alternative: Use ChromaDB backend with --storage-backend chromadb
  • See Troubleshooting Guide for details

🍎 macOS SQLite Extension Support

macOS users may encounter enable_load_extension errors with sqlite-vec:

  • System Python on macOS lacks SQLite extension support by default
  • Solution: Use Homebrew Python: brew install python && rehash
  • Alternative: Use pyenv: PYTHON_CONFIGURE_OPTS='--enable-loadable-sqlite-extensions' pyenv install 3.12.0
  • Fallback: Use ChromaDB backend: export MCP_MEMORY_STORAGE_BACKEND=chromadb
  • See Troubleshooting Guide for details

📚 Complete Documentation

👉 Visit our comprehensive Wiki for detailed guides:

🚀 Setup & Installation

🧠 Advanced Topics

🔧 Help & Reference

✨ Key Features

🧠 Intelligent Memory Management

  • Semantic search with vector embeddings
  • Natural language time queries ("yesterday", "last week")
  • Tag-based organization with smart categorization
  • Memory consolidation with dream-inspired algorithms

🔗 Universal Compatibility

  • Claude Desktop - Native MCP integration
  • Claude Code - Memory-aware development with hooks
  • VS Code, Cursor, Continue - IDE extensions
  • 13+ AI applications - REST API compatibility

💾 Flexible Storage

  • SQLite-vec - Fast local storage (recommended)
  • ChromaDB - Multi-client collaboration
  • Cloudflare - Global edge distribution
  • Automatic backups and synchronization

🚀 Production Ready

  • Cross-platform - Windows, macOS, Linux
  • Service installation - Auto-start background operation
  • HTTPS/SSL - Secure connections
  • Docker support - Easy deployment

💡 Basic Usage

# Store a memory
uv run memory store "Fixed race condition in authentication by adding mutex locks"

# Search for relevant memories  
uv run memory recall "authentication race condition"

# Search by tags
uv run memory search --tags python debugging

# Check system health
uv run memory health

🔧 Configuration

Claude Desktop Integration

Recommended approach - Add to your Claude Desktop config (~/.claude/config.json):

{
  "mcpServers": {
    "memory": {
      "command": "python",
      "args": ["-m", "mcp_memory_service.server"],
      "env": {
        "MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec"
      }
    }
  }
}

Alternative approaches:

// Option 1: UV tooling (if using UV)
{
  "mcpServers": {
    "memory": {
      "command": "uv",
      "args": ["--directory", "/path/to/mcp-memory-service", "run", "memory", "server"],
      "env": {
        "MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec"
      }
    }
  }
}

// Option 2: Direct script path (v6.17.0+)
{
  "mcpServers": {
    "memory": {
      "command": "python",
      "args": ["/path/to/mcp-memory-service/scripts/server/run_memory_server.py"],
      "env": {
        "MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec"
      }
    }
  }
}

Environment Variables

# Storage backend (sqlite_vec recommended)
export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec

# Enable HTTP API
export MCP_HTTP_ENABLED=true
export MCP_HTTP_PORT=8000

# Security  
export MCP_API_KEY="your-secure-key"

🏗️ Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   AI Clients    │    │  MCP Protocol   │    │ Storage Backend │
│                 │    │                 │    │                 │
│ • Claude Desktop│◄──►│ • Memory Store  │◄──►│ • SQLite-vec    │
│ • Claude Code   │    │ • Semantic      │    │ • ChromaDB      │
│ • VS Code       │    │   Search        │    │ • Cloudflare    │
│ • Cursor        │    │ • Tag System    │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘

🛠️ Development

Project Structure

mcp-memory-service/
├── src/mcp_memory_service/    # Core application
│   ├── models/                # Data models
│   ├── storage/               # Storage backends
│   ├── web/                   # HTTP API & dashboard
│   └── server.py              # MCP server
├── scripts/                   # Utilities & installation
├── tests/                     # Test suite
└── tools/docker/              # Docker configuration

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. Submit a pull request

See CONTRIBUTING.md for detailed guidelines.

🆘 Support

📊 In Production

Real-world metrics from active deployments:

  • 750+ memories stored and actively used
  • <500ms response time for semantic search
  • 65% token reduction in Claude Code sessions
  • 96.7% faster context setup (15min → 30sec)
  • 100% knowledge retention across sessions

🏆 Recognition

  • Smithery Verified MCP Server
  • Featured AI Tool
  • Production-tested across 13+ AI applications
  • Community-driven with real-world feedback and improvements

📄 License

Apache License 2.0 - see LICENSE for details.


Ready to supercharge your AI workflow? 🚀

👉 Start with our Installation Guide or explore the Wiki for comprehensive documentation.

Transform your AI conversations into persistent, searchable knowledge that grows with you.

Quick Install

Quick Actions

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source

Boost your projects with Wisdom Gate LLM API

Supporting GPT-5, Claude-4, DeepSeek v3, Gemini and more.

Enjoy a free trial and save 20%+ compared to official pricing.