Recursive Companion MCP
An MCP server that implements iterative refinement of responses through self-critique cycles, breaking the process into discrete steps to avoid timeouts and show progress.
README Documentation
Recursive Companion MCP
An MCP (Model Context Protocol) server that implements iterative refinement through self-critique cycles. Inspired by Hank Besser's recursive-companion, this implementation adds incremental processing to avoid timeouts and enable progress visibility.
Features
- Incremental Refinement: Avoids timeouts by breaking refinement into discrete steps
- Mathematical Convergence: Uses cosine similarity to measure when refinement is complete
- Domain-Specific Optimization: Auto-detects and optimizes for technical, marketing, strategy, legal, and financial domains
- Progress Visibility: Each step returns immediately, allowing UI updates
- Parallel Sessions: Support for multiple concurrent refinement sessions
- Auto Session Tracking: No manual session ID management needed
- AI-Friendly Error Handling: Actionable diagnostics and recovery hints for AI assistants
How It Works
The refinement process follows a Draft → Critique → Revise → Converge pattern:
- Draft: Generate initial response
- Critique: Create multiple parallel critiques (using faster models)
- Revise: Synthesize critiques into improved version
- Converge: Measure similarity and repeat until threshold reached
For detailed architecture diagrams and system design documentation, see ARCHITECTURE.md.
Installation
Prerequisites
- Python 3.10+
- uv package manager
- AWS Account with Bedrock access
- Claude Desktop app
Setup
- Clone the repository:
git clone https://github.com/thinkerz-ai/recursive-companion-mcp.git
cd recursive-companion-mcp
- Install dependencies:
uv sync
-
Configure AWS credentials as environment variables or through AWS CLI
-
Add to Claude Desktop config (
~/Library/Application Support/Claude/claude_desktop_config.json):
Basic Configuration:
{
"mcpServers": {
"recursive-companion": {
"command": "/path/to/recursive-companion-mcp/run.sh",
"env": {
"AWS_REGION": "us-east-1",
"AWS_ACCESS_KEY_ID": "your-access-key",
"AWS_SECRET_ACCESS_KEY": "your-secret-key"
}
}
}
}
Optimized Configuration (Recommended):
{
"mcpServers": {
"recursive-companion": {
"command": "/path/to/recursive-companion-mcp/run.sh",
"env": {
"AWS_REGION": "us-east-1",
"AWS_ACCESS_KEY_ID": "your-access-key",
"AWS_SECRET_ACCESS_KEY": "your-secret-key",
"BEDROCK_MODEL_ID": "anthropic.claude-3-sonnet-20240229-v1:0",
"CRITIQUE_MODEL_ID": "anthropic.claude-3-haiku-20240307-v1:0",
"CONVERGENCE_THRESHOLD": "0.95",
"PARALLEL_CRITIQUES": "2",
"MAX_ITERATIONS": "5",
"REQUEST_TIMEOUT": "600"
}
}
}
}
Performance Tips:
- Use Haiku for
CRITIQUE_MODEL_IDfor 50% speed improvement - Lower
CONVERGENCE_THRESHOLDto 0.95 for faster convergence - Reduce
PARALLEL_CRITIQUESto 2 for better resource usage - See API_EXAMPLES.md for more configuration examples
Usage
The tool provides several MCP endpoints for iterative refinement:
Quick Start Examples
Simple refinement (auto-complete):
quick_refine(prompt="Explain the key principles of secure API design", max_wait=60)
Step-by-step refinement (full control):
# Start session
start_refinement(prompt="Design a microservices architecture for e-commerce", domain="technical")
# Continue iteratively
continue_refinement() # Draft phase
continue_refinement() # Critique phase
continue_refinement() # Revision phase
# Get final result
get_final_result()
Session management:
current_session() # Check active session
list_refinement_sessions() # List all sessions
abort_refinement() # Stop and get best result so far
Complete API Reference
For comprehensive examples with realistic scenarios, error handling patterns, and integration workflows, see API_EXAMPLES.md.
Available Tools
start_refinement- Begin new refinement session with domain detectioncontinue_refinement- Advance session through draft→critique→revise cyclesget_final_result- Retrieve completed refinementget_refinement_status- Check progress without advancingcurrent_session- Get active session info (no ID needed)list_refinement_sessions- See all active sessionsabort_refinement- Stop refinement, return best version so farquick_refine- Auto-complete simple refinements (under 60s)
Configuration
| Environment Variable | Default | Description |
|---|---|---|
BEDROCK_MODEL_ID | anthropic.claude-3-sonnet-20240229-v1:0 | Main generation model |
CRITIQUE_MODEL_ID | Same as BEDROCK_MODEL_ID | Model for critiques (use Haiku for speed) |
CONVERGENCE_THRESHOLD | 0.98 | Similarity threshold for convergence (0.90-0.99) |
PARALLEL_CRITIQUES | 3 | Number of parallel critiques per iteration |
MAX_ITERATIONS | 10 | Maximum refinement iterations |
REQUEST_TIMEOUT | 300 | Timeout in seconds |
🌐 Streamable HTTP Transport
The server supports a stateless Streamable HTTP transport for enterprise deployments requiring horizontal scalability and web-based integration.
Enable Streamable HTTP Transport
# Set transport type to streamable_http
export MCP_TRANSPORT=streamable_http
export MCP_HTTP_HOST=127.0.0.1 # Optional, defaults to 127.0.0.1
export MCP_HTTP_PORT=8080 # Optional, defaults to 8080
# Run the server
uv run python -m recursive_companion_mcp
Or in a single command:
MCP_TRANSPORT=streamable_http MCP_HTTP_PORT=8080 uv run python -m recursive_companion_mcp
Streamable HTTP Features
- ✅ Stateless Request Handling: New server instance per request for complete isolation
- ✅ Session Persistence: Sessions maintained across requests via session IDs
- ✅ JSON-RPC 2.0 Compliant: Full MCP protocol support over HTTP
- ✅ Enterprise Scalability: Horizontal scaling with load balancers
- ✅ Web Integration: Perfect for web-based AI assistants
- ✅ Health Checks: Built-in health check endpoints
Example HTTP Request
curl -X POST http://localhost:8080/mcp \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "start_refinement",
"arguments": {
"topic": "Improve this algorithm design",
"style": "analytical"
}
},
"id": 1
}'
Transport Modes Comparison
| Feature | Stdio Transport | HTTP Transport | Streamable HTTP Transport |
|---|---|---|---|
| Use Case | Claude Desktop | Network access | Enterprise scalability |
| State Management | In-memory | In-memory | Stateless per request |
| Session Persistence | No | No | Yes (via session IDs) |
| Load Balancing | No | No | Yes |
| Web Integration | No | Limited | Full support |
Performance
With optimized settings:
- Each iteration: 60-90 seconds
- Typical convergence: 2-3 iterations
- Total time: 2-4 minutes (distributed across multiple calls)
Using Haiku for critiques reduces iteration time by ~50%.
AI-Friendly Features
This tool includes special features for AI assistants using it:
- Auto Session Tracking: The
current_session_idis automatically maintained - Smart Error Messages: Errors include
_ai_prefixed fields with actionable diagnostics - Performance Hints: Responses include optimization tips and predictions
- Progress Predictions: Convergence tracking includes estimates of remaining iterations
Example AI-helpful error response:
{
"success": false,
"error": "No session_id provided and no current session",
"_ai_context": {
"current_session_id": null,
"active_session_count": 2,
"recent_sessions": [...]
},
"_ai_suggestion": "Use start_refinement to create a new session",
"_human_action": "Start a new refinement session first"
}
Architecture
┌─────────────┐ ┌──────────────┐ ┌─────────────┐
│ Claude │────▶│ MCP Server │────▶│ Bedrock │
│ Desktop │◀────│ │◀────│ Claude │
└─────────────┘ └──────────────┘ └─────────────┘
│
▼
┌──────────────┐
│ Session │
│ Manager │
└──────────────┘
Development
Running tests
uv run pytest tests/
Local testing
uv run python test_incremental.py
Automation Infrastructure
This project includes comprehensive automation for OSS readiness:
- 🤖 Dependabot: Automated dependency updates with intelligent grouping
- 🚀 Semantic Release: Automated versioning and releases based on conventional commits
- 🔒 Security Monitoring: Multi-tool security scanning (Safety, Bandit, CodeQL, Trivy)
- ✅ Quality Gates: Automated testing, coverage, linting, and type checking
- 📦 Dependency Management: Advanced dependency health monitoring and updates
Automation Commands
# Verify automation setup
uv run python scripts/setup_check.py
# Validate workflow configurations
uv run python scripts/validate_workflows.py
# Manual release (if needed)
uv run semantic-release version --noop # dry run
uv run semantic-release version --minor # actual release
Development Workflow
- Feature Development: Work on feature branches
- Pull Requests: Quality gates run automatically
- Code Review: Automated security and quality feedback
- Merge to develop: Beta releases created automatically
- Merge to main: Production releases created automatically
See AUTOMATION.md for complete automation documentation.
Attribution
This project is inspired by recursive-companion by Hank Besser. The original implementation provided the conceptual Draft → Critique → Revise → Converge pattern. This MCP version adds:
- Session-based incremental processing to avoid timeouts
- AWS Bedrock integration for Claude and Titan embeddings
- Domain auto-detection and specialized prompts
- Mathematical convergence measurement
- Support for different models for critiques vs generation
Contributing
Contributions are welcome! Please read our Contributing Guide for details.
License
MIT License - see LICENSE file for details.
Acknowledgments
- Original concept: Hank Besser's recursive-companion
- Built for the Model Context Protocol
- Uses AWS Bedrock for LLM access
- Inspired by iterative refinement patterns in AI reasoning