JUHE API Marketplace
chrisurf avatar
MCP Server

DALL-E 3 MCP Server

A Model Context Protocol server that provides OpenAI's DALL-E 3 image generation capabilities, allowing LLMs to generate high-quality images through a standardized interface.

1
GitHub Stars
8/23/2025
Last Updated
MCP Server Configuration
1{
2 "name": "imagegen-mcp-d3",
3 "command": "npx",
4 "args": [
5 "imagegen-mcp-d3"
6 ],
7 "env": {
8 "OPENAI_API_KEY": "your-openai-api-key-here"
9 }
10}
JSON10 lines

README Documentation

DALL-E 3 MCP Server

CI/CD Pipeline

A Model Context Protocol (MCP) server that provides DALL-E 3 image generation capabilities. This server allows LLMs to generate high-quality images using OpenAI's DALL-E 3 model through the standardized MCP interface.

Features

  • 🎨 High-Quality Image Generation: Uses DALL-E 3 for state-of-the-art image creation
  • 🔧 Flexible Configuration: Support for different sizes, quality levels, and styles
  • 📁 Automatic File Management: Handles directory creation and file saving
  • 🛡️ Robust Error Handling: Comprehensive error handling with detailed feedback
  • 📊 Detailed Logging: Comprehensive logging for debugging and monitoring
  • 🚀 TypeScript: Fully typed for better development experience
  • 🧪 Well Tested: Comprehensive test suite with high coverage

Installation

Using NPX (Recommended)

npx imagegen-mcp-d3

Using NPM

npm install -g imagegen-mcp-d3

From Source

git clone https://github.com/chrisurf/imagegen-mcp-d3.git
cd imagegen-mcp-d3
npm install
npm run build
npm start

Prerequisites

  • Node.js: Version 18.0.0 or higher
  • OpenAI API Key: You need a valid OpenAI API key with DALL-E 3 access

Configuration

Environment Variables

Set your OpenAI API key as an environment variable:

export OPENAI_API_KEY="your-openai-api-key-here"

Or create a .env file in your project root:

OPENAI_API_KEY=your-openai-api-key-here

Usage

With Claude Desktop

Add this server to your Claude Desktop configuration:

{
  "mcpServers": {
    "imagegen-mcp-d3": {
      "command": "npx",
      "args": ["imagegen-mcp-d3"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key-here"
      }
    }
  }
}

With Other MCP Clients

The server implements the standard MCP protocol and can be used with any compatible client.

Available Tools

generate_image

Generates an image using DALL-E 3 and saves it to the specified location.

Parameters:

  • prompt (required): Text description of the image to generate
  • output_path (required): Full file path where the image should be saved
  • size (optional): Image dimensions - "1024x1024", "1024x1792", or "1792x1024" (default: "1024x1024")
  • quality (optional): Image quality - "standard" or "hd" (default: "hd")
  • style (optional): Image style - "vivid" or "natural" (default: "vivid")

Example:

{
  "name": "generate_image",
  "arguments": {
    "prompt": "A serene sunset over a mountain lake with pine trees",
    "output_path": "/Users/username/Pictures/sunset_lake.png",
    "size": "1024x1792",
    "quality": "hd",
    "style": "natural"
  }
}

Response:

The tool returns detailed information about the generated image, including:

  • Original and revised prompts
  • Image URL
  • File save location
  • Image specifications
  • File size

API Reference

Image Sizes

  • Square: 1024x1024 - Perfect for social media and general use
  • Portrait: 1024x1792 - Great for mobile wallpapers and vertical displays
  • Landscape: 1792x1024 - Ideal for desktop wallpapers and horizontal displays

Quality Options

  • Standard: Faster generation, good quality
  • HD: Higher quality with more detail (recommended)

Style Options

  • Vivid: More dramatic and artistic interpretations
  • Natural: More realistic and natural-looking results

Development

Setup

git clone https://github.com/chrisurf/imagegen-mcp-d3.git
cd imagegen-mcp-d3
npm install

Available Scripts

npm run dev          # Run in development mode with hot reload
npm run build        # Build for production
npm run start        # Start the built server
npm run test         # Run tests
npm run test:watch   # Run tests in watch mode
npm run test:coverage # Run tests with coverage report
npm run lint         # Run ESLint
npm run lint:fix     # Fix ESLint issues
npm run format       # Format code with Prettier
npm run typecheck    # Run TypeScript type checking

Project Structure

src/
├── index.ts           # Main server implementation
├── types.ts          # TypeScript type definitions
└── __tests__/        # Test files
    └── index.test.ts # Main test suite

Running Tests

# Run all tests
npm test

# Run tests with coverage
npm run test:coverage

# Run tests in watch mode during development
npm run test:watch

Error Handling

The server provides comprehensive error handling for common scenarios:

  • Missing API Key: Clear error message when OPENAI_API_KEY is not set
  • Invalid Parameters: Validation errors for required and optional parameters
  • API Errors: Detailed error messages from the OpenAI API
  • File System Errors: Handling of directory creation and file writing issues
  • Network Errors: Graceful handling of network connectivity issues

Logging

The server provides detailed logging for monitoring and debugging:

  • Request initiation and parameters
  • API communication status
  • Image generation progress
  • File saving confirmation
  • Error details and stack traces

Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

Development Workflow

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Add tests for new functionality
  5. Ensure all tests pass: npm test
  6. Commit your changes: git commit -m 'Add amazing feature'
  7. Push to the branch: git push origin feature/amazing-feature
  8. Open a Pull Request

CI/CD

This project uses GitHub Actions for continuous integration and deployment:

  • Testing: Automated testing on multiple Node.js versions (18, 20, 22)
  • Code Quality: ESLint, Prettier, and TypeScript checks
  • Security: Dependency vulnerability scanning
  • Publishing: Automatic NPM publishing on release
  • Coverage: Local code coverage reporting

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

Changelog

See CHANGELOG.md for a detailed history of changes.

Related Projects

Acknowledgments

  • OpenAI for the DALL-E 3 API
  • Anthropic for the Model Context Protocol specification
  • The MCP community for tools and documentation High-performance MCP for generating images using DALL·E 3 – optimized for fast, scalable, and customizable inference workflows.

Quick Install

Quick Actions

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source