JUHE API Marketplace
Ransom-Alpha avatar
MCP Server

Swarms MCP Documentation Server

An Agent Framework Documentation server that enables AI agents to efficiently retrieve information from documentation databases using hybrid semantic and keyword search for seamless agent integration.

0
GitHub Stars
11/23/2025
Last Updated
No Configuration
Please check the documentation below.
  1. Home
  2. MCP Servers
  3. Swarms_MCPserver

README Documentation

🐝 Swarms MCP Documentation Server


πŸ“– Description

This program is an Agent Framework Documentation MCP Server built on FastMCP, designed to enable AI agents to efficiently retrieve information from your documentation database. It combines hybrid semantic (vector) and keyword (BM25) search, chunked indexing, and a robust FastMCP tools API for seamless agent integration.

Key Capabilities:

  • Efficient, chunk-level retrieval using both semantic and keyword search
  • Agents can query, list, and retrieve documentation using FastMCP tools
  • Local-first, low-latency design (all data indexed and queried locally)
  • Automatic reindexing on file changes
  • Modular: add any repos to corpora/, support for all major filetypes
  • Extensible: add new tools, retrievers, or corpora as needed

Main modules:

  • embed_documents.py β†’ Loads, chunks, and embeds documents
  • swarms_server.py β†’ Brings up the MCP server and FastMCP tools


🌟 Key Features

  • Hybrid Retriever πŸ”: Combines semantic and keyword search.
  • Dynamic Markdown Handling πŸ“„: Smart loader based on file size.
  • Specialized Loaders βš™οΈ: .py, .ipynb, .md, .txt, .yaml, .yml.
  • Chunk and File Summaries πŸ“ˆ: Displays chunk counts along with file counts.
  • Live Watchdog πŸ”₯: Instantly responds to any changes in corpora/.
  • User Confirmation for Costs βœ…: Confirms before expensive embeddings.
  • Healthcheck Endpoint πŸš‘: Ensure server is ready for use.
  • Local-First πŸ—‚οΈ: All repos indexed locally without external dependencies.
  • Safe Deletion Helper πŸ”₯: Auto-delete broken/mismatched indexes.

πŸ—οΈ Version History

VersionDateHighlights
2.22025‑04‑25Split embed/load from server; full chunk counting in loading summaries
1.02025‑04‑25Dynamic Markdown loader, color logs, Healthcheck tool
0.72025‑04‑25Specialized file loaders for .py, .ipynb, .md
0.52025‑04‑10OpenAI large model embeddings, extended MCP tools
0.12025‑04‑10Initial version with generic loaders

πŸ“š Managing Your Corpora (Local Repos)

Because Swarms and other frameworks are very large, full corpora are not pushed to GitHub.

Instead, you clone them manually under corpora/:

# Inside your project folder:
cd corpora/

# Clone useful frameworks:
git clone https://github.com/SwarmsAI/Swarms
git clone https://github.com/SwarmsAI/Swarms-Examples
git clone https://github.com/microsoft/autogen
git clone https://github.com/langchain-ai/langgraph
git clone https://github.com/openai/openai-agent-sdk

βœ… Notes:

  • Add any repo β€” public, private, custom.
  • Build your own custom AI knowledge base locally.
  • Large repos (>500MB) are fine; all indexing is local.

πŸš€ Quick Start

# 1. Activate virtual environment
venv\Scripts\Activate.ps1

# 2. Install all dependencies
pip install -r requirements.txt

# 3. Configure OpenAI API Key
echo OPENAI_API_KEY=sk-... > .env

# 4. (Load and embed documents
python embed_documents.py

# 5. Start MCP server
python swarms_server.py
# If no index is found, the server will prompt you to embed documents automatically.

βš™οΈ Configuration

  • Corpus: Drop repos inside corpora/
  • Environment Variables:
    • .env must contain OPENAI_API_KEY
  • Index File Support:
    • Both chroma-collections.parquet and chroma.sqlite3 are supported. .parquet is preferred if both exist.
  • Auto-Embedding:
    • If no index is found, the server will prompt you to embed and index your documents automatically.
  • Optional:
    • Disable Chroma compaction if you prefer:
      setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
      
  • Command-Line Flags:
    • --reindex β†’ trigger a refresh reindex during server run.

πŸ”„ File Watching & Auto Reindexing

The MCP Server watches corpora/ for any file changes:

  • Any modification, creation, or deletion triggers a live reindex.
  • No need to restart the server.

πŸ› οΈ Available FastMCP Tools

ToolDescription
swarm_docs.searchSearch relevant documentation chunks
swarm_docs.list_filesList all indexed files
swarm_docs.get_chunkGet a specific chunk by path and index
swarm_docs.reindexForce reindex (full or incremental)
swarm_docs.healthcheckCheck MCP Server status

❓ Troubleshooting

  • Q: I get 'No valid existing index found' when starting the server.
    • A: The server will now prompt you to embed and index documents. Accept the prompt to proceed, or run python embed_documents.py manually first.
  • Q: Which index file is used?
    • A: The server will use chroma-collections.parquet if available, otherwise chroma.sqlite3.
  • Q: I want to force a reindex.
    • A: Run python swarms_server.py --reindex or use the swarm_docs.reindex tool.

πŸ“‹ Example Usage

# Search the documentation
result = swarm_docs.search("How do I load a notebook?")
print(result)

# List all available files
files = swarm_docs.list_files()
print(files)

# Get a specific document chunk
chunk = swarm_docs.get_chunk(path="examples/agent.py", chunk_idx=2)
print(chunk["content"])

🧰 Extending & Rebuilding

  • Add new docs β†’ drop into corpora/, then:

    python swarms_server.py --reindex
    
  • Schema changes β†’ (e.g. different metadata structure):

    python swarms_server.py --reindex --full
    
  • Add new repo β†’ Drop folder under corpora/, reindex.

  • Recommended for mostly read-only repos:

    setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
    

πŸ”— IDE Integration

Plug directly into Windsurf Cascade:

"swarms": {
  "command": "C:/…/Swarms/venv/Scripts/python.exe",
  "args": ["swarms_server.py"]
}

Then you can access swarm_docs.* tools from Cascade automations.


πŸ“¦ Requirements

πŸ’‘ Python 3.11 Environment Required

Create your environment explicitly:

python3.11 -m venv venv

Then install with:

pip install -r requirements.txt

βœ… MCP Server Ready

After boot:

  • Proper loading summaries
  • Safe confirmation before expensive actions
  • Auto file watching and reindexing
  • Windsurf plug-in ready
  • Full tool coverage

You're good to cascade it! πŸ„β€β™‚οΈ


πŸ“ˆ Flow Diagram

                          +------------------+
                          |    πŸ–₯️ MCP Server  |
                          +------------------+
                                  |
     +---------------------------------------------------+
     |                                                   |
+-------------+                                     +-----------------+
|  πŸ“ Corpora |                                     | πŸ”Ž FastMCP Tools |
|  Folder     |                                     | (search, list,   |
|  (markdown, |                                     | get_chunk, etc.) |
|  code, etc) |                                     +-----------------+
+-------------+                                               |
      |                                                       |
+-----------------+                                   +----------------+
|  πŸ“š Loaders      |                                   | 🧠 Ensemble    |
| (Python, MD, TXT)|                                   | Retriever (BM25|
|  Split into Chunks|                                  | + Chroma)      |
+-----------------+                                   +----------------+
      |                                                       |
+-----------------+                                   +----------------+
| βœ‚οΈ Text Splitter |                                   | 🧩 Similarity   |
| (RecursiveCharacter) |                              | Search (chunks) |
+-----------------+                                   +----------------+
      |                                                       |
+-----------------+                                   +----------------+
| πŸ’Ύ Embed chunks  |  β€”OpenAI Embedding (small)β€”>    | πŸ›’οΈ Chroma Vector |
| via OpenAI API  |                                   | DB (Local Store) |
+-----------------+                                   +----------------+
      |                                                       |
+-----------------+                                   +----------------+
| πŸ“‘ Reindex Watcher|                                  | πŸ‘€ File Watchdog |
| (Auto detect      |                                  | (Auto reindex   |
| new/modified files|                                  | on file events) |
+-----------------+                                   +----------------+

Quick Actions

View on GitHubView All Servers

Key Features

Model Context Protocol
Secure Communication
Real-time Updates
Open Source

Boost your projects with Wisdom Gate LLM API

Supporting GPT-5, Claude-4, DeepSeek v3, Gemini and more.

Enjoy a free trial and save 20%+ compared to official pricing.

Learn More
JUHE API Marketplace

Accelerate development, innovate faster, and transform your business with our comprehensive API ecosystem.

JUHE API VS

  • vs. RapidAPI
  • vs. API Layer
  • API Platforms 2025
  • API Marketplaces 2025
  • Best Alternatives to RapidAPI

For Developers

  • Console
  • Collections
  • Documentation
  • MCP Servers
  • Free APIs
  • Temp Mail Demo

Product

  • Browse APIs
  • Suggest an API
  • Wisdom Gate LLM
  • Global SMS Messaging
  • Temp Mail API

Company

  • What's New
  • Welcome
  • About Us
  • Contact Support
  • Terms of Service
  • Privacy Policy
Featured on Startup FameFeatured on Twelve ToolsFazier badgeJuheAPI Marketplace - Connect smarter, beyond APIs | Product Huntai tools code.marketDang.ai
Copyright Β© 2025 - All rights reserved