MCP Server
Ollama MCP Server
A bridge that enables seamless integration of Ollama's local LLM capabilities into MCP-powered applications, allowing users to manage and run AI models locally with full API coverage.
74
GitHub Stars
8/23/2025
Last Updated
MCP Server Configuration
1{
2 "name": "ollama",
3 "command": "node",
4 "args": [
5 "/path/to/ollama-server/build/index.js"
6 ],
7 "env": {
8 "OLLAMA_HOST": "http://127.0.0.1: 11434"
9 }
10}
JSON10 lines
README Documentation
Ollama MCP Server
🚀 A powerful bridge between Ollama and the Model Context Protocol (MCP), enabling seamless integration of Ollama's local LLM capabilities into your MCP-powered applications.
🌟 Features
Complete Ollama Integration
- Full API Coverage: Access all essential Ollama functionality through a clean MCP interface
- OpenAI-Compatible Chat: Drop-in replacement for OpenAI's chat completion API
- Local LLM Power: Run AI models locally with full control and privacy
Core Capabilities
-
🔄 Model Management
- Pull models from registries
- Push models to registries
- List available models
- Create custom models from Modelfiles
- Copy and remove models
-
🤖 Model Execution
- Run models with customizable prompts
- Chat completion API with system/user/assistant roles
- Configurable parameters (temperature, timeout)
- Raw mode support for direct responses
-
🛠 Server Control
- Start and manage Ollama server
- View detailed model information
- Error handling and timeout management
🚀 Getting Started
Prerequisites
- Ollama installed on your system
- Node.js and npm/pnpm
Installation
- Install dependencies:
pnpm install
- Build the server:
pnpm run build
Configuration
Add the server to your MCP configuration:
For Claude Desktop:
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"ollama": {
"command": "node",
"args": ["/path/to/ollama-server/build/index.js"],
"env": {
"OLLAMA_HOST": "http://127.0.0.1:11434" // Optional: customize Ollama API endpoint
}
}
}
}
🛠 Usage Examples
Pull and Run a Model
// Pull a model
await mcp.use_mcp_tool({
server_name: "ollama",
tool_name: "pull",
arguments: {
name: "llama2"
}
});
// Run the model
await mcp.use_mcp_tool({
server_name: "ollama",
tool_name: "run",
arguments: {
name: "llama2",
prompt: "Explain quantum computing in simple terms"
}
});
Chat Completion (OpenAI-compatible)
await mcp.use_mcp_tool({
server_name: "ollama",
tool_name: "chat_completion",
arguments: {
model: "llama2",
messages: [
{
role: "system",
content: "You are a helpful assistant."
},
{
role: "user",
content: "What is the meaning of life?"
}
],
temperature: 0.7
}
});
Create Custom Model
await mcp.use_mcp_tool({
server_name: "ollama",
tool_name: "create",
arguments: {
name: "custom-model",
modelfile: "./path/to/Modelfile"
}
});
🔧 Advanced Configuration
OLLAMA_HOST
: Configure custom Ollama API endpoint (default: http://127.0.0.1:11434)- Timeout settings for model execution (default: 60 seconds)
- Temperature control for response randomness (0-2 range)
🤝 Contributing
Contributions are welcome! Feel free to:
- Report bugs
- Suggest new features
- Submit pull requests
📝 License
MIT License - feel free to use in your own projects!
Built with ❤️ for the MCP ecosystem
Quick Install
Quick Actions
Key Features
Model Context Protocol
Secure Communication
Real-time Updates
Open Source