README Documentation
Gemini MCP Server with Smart Tool Intelligence
Welcome to the Gemini MCP Server, the first MCP server with Smart Tool Intelligence - a revolutionary self-learning system that adapts to your preferences and improves over time. This comprehensive platform provides 7 AI-powered tools with automatic prompt enhancement and context awareness.
🚀 Features Overview
🤖 7 AI-Powered Tools
- Image Generation - Create images from text prompts using Gemini 2.0 Flash
- Image Editing - Edit existing images with natural language instructions
- Chat - Interactive conversations with context-aware responses
- Audio Transcription - Convert audio to text with optional verbatim mode
- Code Execution - Run Python code in a secure sandbox environment
- Video Analysis - Analyze video content for summaries, transcripts, and insights
- Image Analysis - Extract objects, text, and detailed descriptions from images
🧠 Smart Tool Intelligence System (First in MCP Ecosystem)
- Self-Learning - Automatically learns from successful interactions
- Context Detection - Recognizes consciousness research, coding, debugging contexts
- Pattern Recognition - Identifies usage patterns and user preferences
- Prompt Enhancement - Refines prompts for better AI model performance
- Persistent Memory - Stores learned preferences across sessions
- Automatic Migration - Seamlessly upgrades preference storage
📦 Quick Start
Installation
git clone https://github.com/Garblesnarff/gemini-mcp-server.git
cd gemini-mcp-server
npm install
Configuration
- Get your Gemini API key from Google AI Studio
- Copy the environment template:
cp .env.example .env
- Edit
.env
and add your API key:GEMINI_API_KEY=your_actual_api_key_here OUTPUT_DIR=/path/to/your/output/directory # Optional DEBUG=false # Optional
Running the Server
npm start
# or for development with debug logging:
npm run dev
Integration with Claude Desktop
Add to your Claude Desktop config (claude_desktop_config.json
):
{
\"mcpServers\": {
\"gemini\": {
\"command\": \"node\",
\"args\": [\"/path/to/gemini-mcp-server/gemini-server.js\"],
\"env\": {
\"GEMINI_API_KEY\": \"your_api_key_here\"
}
}
}
}
🛠️ Tool Reference
1. Image Generation (generate_image
)
Generate images from text descriptions using Gemini 2.0 Flash.
Parameters:
prompt
(string, required) - Description of the image to generatecontext
(string, optional) - Context for Smart Tool Intelligence enhancement
Example:
{
\"prompt\": \"A serene mountain landscape at sunset with vibrant colors\",
\"context\": \"artistic\"
}
Returns:
{
\"content\": [{
\"type\": \"text\",
\"text\": \"Generated a beautiful mountain landscape image.\"
}, {
\"type\": \"image\",
\"data\": \"base64_image_data\",
\"mimeType\": \"image/png\"
}]
}
2. Image Editing (gemini-edit-image
)
Edit existing images using natural language instructions.
Parameters:
image_path
(string, required) - Path to the image file to editedit_instruction
(string, required) - Description of desired changescontext
(string, optional) - Context for enhancement
Example:
{
\"image_path\": \"/path/to/image.jpg\",
\"edit_instruction\": \"Add shooting stars to the night sky\",
\"context\": \"artistic\"
}
3. Chat (gemini-chat
)
Interactive conversations with Gemini AI that learns your preferences.
Parameters:
message
(string, required) - Your message or questioncontext
(string, optional) - Context for Smart Tool Intelligence
Example:
{
\"message\": \"Explain quantum computing in simple terms\",
\"context\": \"consciousness\" // Will apply academic rigor enhancement
}
4. Audio Transcription (gemini-transcribe-audio
)
Convert audio files to text with Smart Tool Intelligence enhancement.
Parameters:
file_path
(string, required) - Path to audio file (MP3, WAV, FLAC, AAC, OGG, WEBM, M4A)language
(string, optional) - Language hint for better accuracycontext
(string, optional) - Use "verbatim" for exact word-for-word transcriptionpreserve_spelled_acronyms
(boolean, optional) - Keep U-R-L instead of URL
Example (Standard):
{
\"file_path\": \"/path/to/audio.mp3\",
\"language\": \"en\"
}
Example (Verbatim Mode):
{
\"file_path\": \"/path/to/audio.mp3\",
\"context\": \"verbatim\", // Gets exact word-for-word transcription
\"preserve_spelled_acronyms\": true
}
Verbatim Mode Features:
- Captures all "um", "uh", "like", repeated words
- Preserves emotional expressions: [laughs], [sighs], [clears throat]
- Maintains original punctuation and sentence structure
- No summarization or cleanup
5. Code Execution (gemini-code-execute
)
Execute Python code in a secure sandbox environment.
Parameters:
code
(string, required) - Python code to executecontext
(string, optional) - Context for enhancement
Example:
{
\"code\": \"import pandas as pd\\ndata = {'x': [1,2,3], 'y': [4,5,6]}\\ndf = pd.DataFrame(data)\\nprint(df.describe())\",
\"context\": \"code\"
}
6. Video Analysis (gemini-analyze-video
)
Analyze video content for summaries, transcripts, and detailed insights.
Parameters:
file_path
(string, required) - Path to video file (MP4, MOV, AVI, WEBM, MKV, FLV)analysis_type
(string, optional) - "summary", "transcript", "objects", "detailed", "custom"context
(string, optional) - Context for enhancement
Example:
{
\"file_path\": \"/path/to/video.mp4\",
\"analysis_type\": \"detailed\"
}
7. Image Analysis (gemini-analyze-image
)
Extract detailed information from images including objects, text, and descriptions.
Parameters:
file_path
(string, required) - Path to image file (JPEG, PNG, WebP, HEIC, HEIF, BMP, GIF)analysis_type
(string, optional) - "summary", "objects", "text", "detailed", "custom"context
(string, optional) - Context for enhancement
Example:
{
\"file_path\": \"/path/to/image.jpg\",
\"analysis_type\": \"objects\"
}
🧠 Smart Tool Intelligence System
How It Works
The Smart Tool Intelligence system is the first of its kind in the MCP ecosystem. It automatically:
- Detects Context - Recognizes if you're doing consciousness research, coding, debugging, etc.
- Enhances Prompts - Adds relevant instructions based on learned patterns
- Learns Patterns - Stores successful interaction patterns for future use
- Adapts Over Time - Gets better at helping you with each interaction
Context Types
The system recognizes these contexts and applies appropriate enhancements:
consciousness
- Adds academic rigor, citations, detailed explanationscode
- Includes practical examples, working code, best practicesdebugging
- Focuses on root cause analysis and specific fixesgeneral
- Applies comprehensive, structured responsesverbatim
- For audio transcription, provides exact word-for-word output
Storage Location
Preferences are stored internally at ./data/tool-preferences.json
with automatic migration from external storage.
Implementing Smart Tool Intelligence in Your MCP Server
Want to add this revolutionary capability to your own MCP server? Here's how:
1. Core Architecture
// src/intelligence/context-detector.js
class ContextDetector {
detectContext(prompt, toolName) {
// Implement pattern matching for different contexts
if (this.isConsciousnessContext(prompt)) return 'consciousness';
if (this.isCodeContext(prompt)) return 'code';
if (this.isDebuggingContext(prompt)) return 'debugging';
return 'general';
}
}
// src/intelligence/prompt-enhancer.js
class PromptEnhancer {
enhancePrompt(originalPrompt, context, toolName) {
// Apply context-specific enhancements
const enhancement = this.getEnhancementForContext(context);
return `${originalPrompt}\\n\\n${enhancement}`;
}
}
// src/intelligence/preference-store.js
class PreferencesManager {
async storePattern(original, enhanced, context, toolName, success) {
// Store successful patterns for future learning
}
async getPatterns(context) {
// Retrieve learned patterns for context
}
}
2. Integration Pattern
// In your tool's execute method:
async execute(args) {
const intelligence = IntelligenceSystem.getInstance();
// Detect context and enhance prompt
const context = args.context || intelligence.contextDetector.detectContext(args.prompt, this.name);
const enhancedPrompt = await intelligence.enhancePrompt(args.prompt, context, this.name);
// Execute with enhanced prompt
const result = await this.geminiService.generateContent(enhancedPrompt);
// Store successful pattern
await intelligence.storeSuccessfulPattern(args.prompt, enhancedPrompt, context, this.name);
return result;
}
3. Key Implementation Files
Study these files from this repository:
src/intelligence/index.js
- Main intelligence coordinatorsrc/intelligence/context-detector.js
- Context recognition logicsrc/intelligence/prompt-enhancer.js
- Enhancement applicationsrc/intelligence/preference-store.js
- Pattern storage and retrievalsrc/tools/base-tool.js
- Integration with tool execution
🧪 Testing
Run Test Suite
# Test basic functionality
npm test
# Test Smart Tool Intelligence
node test-tool-intelligence-full.js
# Test internal storage
node test-internal-storage.js
# Test verbatim transcription
node test-verbatim-mode.js
Manual Testing Examples
# Test image generation
echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"generate_image\",\"arguments\":{\"prompt\":\"A cute robot reading a book\"}}}' | node gemini-server.js
# Test chat with consciousness context
echo '{\"jsonrpc\":\"2.0\",\"id\":2,\"method\":\"tools/call\",\"params\":{\"name\":\"gemini-chat\",\"arguments\":{\"message\":\"What is consciousness?\",\"context\":\"consciousness\"}}}' | node gemini-server.js
📊 Performance & Limits
File Size Limits
- Images: 20MB (JPEG, PNG, WebP, HEIC, HEIF, BMP, GIF)
- Audio: 20MB (MP3, WAV, FLAC, AAC, OGG, WEBM, M4A)
- Video: 100MB (MP4, MOV, AVI, WEBM, MKV, FLV)
API Rate Limits
- Follows Google Gemini API rate limits
- Built-in error handling and retry logic
- Graceful degradation on quota exceeded
🏗️ Architecture Deep Dive
Modular Design
src/
├── server.js # MCP protocol handler
├── config.js # Configuration management
├── tools/ # Tool implementations
│ ├── index.js # Tool registry & dispatcher
│ ├── base-tool.js # Abstract base class
│ ├── chat.js # Chat tool
│ ├── image-generation.js # Image generation tool
│ ├── image-editing.js # Image editing tool
│ ├── audio-transcription.js # Audio transcription tool
│ ├── code-execution.js # Code execution tool
│ ├── video-analysis.js # Video analysis tool
│ └── image-analysis.js # Image analysis tool
├── intelligence/ # Smart Tool Intelligence
│ ├── index.js # Intelligence coordinator
│ ├── context-detector.js # Context recognition
│ ├── prompt-enhancer.js # Prompt enhancement
│ └── preference-store.js # Pattern storage
├── gemini/ # Gemini API integration
│ ├── gemini-service.js # API service layer
│ └── request-handler.js # Request formatting
└── utils/ # Utilities
├── logger.js # Logging system
└── file-utils.js # File operations
Intelligence System Flow
- Request Received → Tool's execute method called
- Context Detection → Analyze prompt for context clues
- Pattern Retrieval → Get relevant learned patterns
- Prompt Enhancement → Apply context-specific improvements
- API Execution → Send enhanced prompt to Gemini
- Pattern Storage → Store successful interaction pattern
- Response Return → Return enhanced result to user
🔧 Customization
Adding New Contexts
// In src/intelligence/context-detector.js
isMyCustomContext(prompt) {
const patterns = [
/custom pattern 1/i,
/custom pattern 2/i
];
return patterns.some(pattern => pattern.test(prompt));
}
// In src/intelligence/prompt-enhancer.js
getEnhancementForContext(context) {
const enhancements = {
'my_custom_context': 'Apply my custom enhancement instructions here.',
// ... other contexts
};
return enhancements[context] || enhancements.general;
}
Adding New Tools
- Create tool file in
src/tools/my-new-tool.js
- Extend
BaseTool
class - Implement
execute
method with intelligence integration - Register in
src/tools/index.js
// src/tools/my-new-tool.js
class MyNewTool extends BaseTool {
constructor(geminiService, intelligenceSystem) {
super('my-new-tool', 'Description of my tool', geminiService, intelligenceSystem);
}
async execute(args) {
// Use intelligence system for enhancement
const context = args.context || this.detectContext(args.input);
const enhancedPrompt = await this.enhancePrompt(args.input, context);
// Your tool logic here
const result = await this.geminiService.someMethod(enhancedPrompt);
// Store successful pattern
await this.storeSuccessfulPattern(args.input, enhancedPrompt, context);
return result;
}
}
🐛 Troubleshooting
Common Issues
"Missing GEMINI_API_KEY" Error
# Ensure .env file exists and contains your API key
cp .env.example .env
# Edit .env and add: GEMINI_API_KEY=your_key_here
"File not found" Errors
# Ensure file paths are absolute and files exist
# Check file permissions and formats
Intelligence System Not Learning
# Check data directory permissions
ls -la data/
# Verify tool-preferences.json is writable
Debug Mode
DEBUG=true npm start
# or
npm run dev
Logs Location
- Application logs: Console output
- Intelligence patterns:
./data/tool-preferences.json
- Generated images:
$OUTPUT_DIR
(default:~/Claude/gemini-images
)
🤝 Contributing
We welcome contributions! This project represents a new paradigm in MCP server development.
Development Setup
git clone https://github.com/Garblesnarff/gemini-mcp-server.git
cd gemini-mcp-server
npm install
npm run dev
Areas for Contribution
- New Contexts - Add support for specialized domains
- Enhanced Patterns - Improve learning algorithms
- New Tools - Expand Gemini AI capabilities
- Performance - Optimize intelligence system performance
- Documentation - Improve guides and examples
📈 Roadmap
- Multi-language Support - Context detection in multiple languages
- Advanced Analytics - Usage patterns and performance metrics
- Tool Chaining - Intelligent coordination between multiple tools
- Custom Models - Support for fine-tuned Gemini models
- Collaborative Learning - Share anonymized patterns across instances
- Visual Interface - Web-based configuration and monitoring
🌟 Why This Matters
This is the first MCP server that truly learns and adapts. Traditional MCP servers are static - they do the same thing every time. Our Smart Tool Intelligence system represents a paradigm shift toward AI tools that become more helpful over time.
For Users: Better results with less effort as the system learns your preferences.
For Developers: A blueprint for building truly intelligent, adaptive AI tools.
For the MCP Ecosystem: A new standard for what MCP servers can become.
📄 License
This project is licensed under the MIT License - feel free to use, modify, and distribute.
🙏 Acknowledgments
Built with:
- Google Gemini AI - Powering the core AI capabilities
- Model Context Protocol - Enabling seamless integration
- Node.js & NPM - Runtime and package management
- Claude & Rob - Human-AI collaboration at its finest
Ready to experience the future of MCP servers? Get started now and watch your AI tools become smarter with every interaction! 🚀"