README Documentation
Claude-Powered MCP Agent for Smart Supply Chain
This project simulates a smart warehouse system powered by Claude using Model Context Protocol (MCP) patterns. The system manages inventory, automated guided vehicles (AGVs), and order processing through a set of specialized agents coordinated by Claude.
Project Structure
claude-mcp-agent-for-supply-chain/
├── agents/ # MCP agent modules
├── simulation/ # Warehouse simulation logic
├── api/ # FastAPI endpoints
├── logs/ # Action and decision logs
├── claude_interface.py # Interface to Claude API
├── main.py # Main application entry point
Features
- MCP-style Modular Agents: InventoryManager, AGVPlanner, RestockAgent, Coordinator
- Warehouse Simulation: Inventory tracking, AGV movement, order processing
- Claude Integration: Uses Anthropic's Claude API for decision-making
- API Endpoints: FastAPI-based endpoints for interacting with the system
Setup
-
Create a virtual environment:
python -m venv venv
-
Activate the virtual environment:
- Windows:
venv\Scripts\activate
- Unix/MacOS:
source venv/bin/activate
- Windows:
-
Install dependencies:
pip install -r requirements.txt
-
Set up environment variables:
cp claude.env.template claude.env
Then edit
claude.env
to add your Anthropic API key. -
Run the application:
python main.py
API Endpoints
GET /inventory
: Get current inventory statusGET /agvs
: Get status of all AGVsPOST /orders
: Create a new orderPOST /ask-agent
: Send a query to Claude agentGET /logs
: Get recent action logs
Example Usage
Example prompt to Claude:
The inventory for Product X is at 5 units, below the threshold of 10. Two AGVs are available. Suggest an optimal action.
Claude will analyze the situation and return structured actions that the system can execute.
License
MIT
Quick Actions
Key Features
Model Context Protocol
Secure Communication
Real-time Updates
Open Source